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Abstract

A modeling approach to 3D transport simulations for an edge ergodized plasma with a finite element method

coupled with a finite difference method is discussed. The idea of the modeling is based on a laminar zone, where one can

approximate the transport with scrape-off layer model. The topics to be discussed are an optimization of 3D grids, a

problem with CPU time (slow down of the code), and accuracy of the code as checked with a particle balance.
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1. Introduction

In order to predict a heat load pattern onto the wall

materials, a modeling of the plasma transport in an

ergodic region is a very important topic for TEXTOR-

dynamic ergodic divertor (DED) [1]. Up to now there

have been 1D and 2D modeling approaches for this

problem. These efforts contain several approximations

which are very questionable for the plasma edge. The

magnetic field lines are a mixture of ergodic field lines

with a long connection length between two intersections

with the wall and a laminar zone, where the connection

length is relatively short. Therefore 3D modeling is es-

sential. At the moment several modelings have been

tested such as finite element [2], finite difference [3] and

Monte Carlo methods [4,5]; each of these schemes has its

own advantages and disadvantages.

The purpose of this paper is to discuss a modeling

approach to 3D transport simulations in an edge ergo-

dized plasma with a finite element method (FEM),

giving practical examples in numerics and pointing out

the problems to be solved. Although the analysis is

based on the configuration of TEXTOR-DED, the dis-

cussion here will not lose generality and can be extended

to all other cases.

The paper consists as follows. The basic ideas of the

modeling are described in Section 2. In Section 3, several

topics about numerical implementation are presented

and discussed. A summary is given in Section 4.

2. An idea of the modeling

The details of the DED configuration and of the

magnetic field structure are found in [1,6]. Here we

briefly describe the idea of the modeling.

As mentioned in Section 1, the magnetic field struc-

ture is three dimensional at the edge. The idea is that the

laminar zone plays an important role at the final step of

the transport to the wall and in such a short connection

length region a normal scrape-off layer (SOL) model is

available. Thus the modeling concentrates on the lami-

nar zone. In the following discussion, for the measure of

connection length we use the number of poloidal turns

that the flux tube experiences before hitting the wall,

instead of length unit. One poloidal turn corresponds to

about 30 m.

Because of the localization of the perturbation at

high field side (HFS), the majority of field lines hit the

wall there as shown in Fig. 1. Therefore, there are two
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locations (cuts) of the highest symmetry, a cut near the

outer mid-plane and near the inner mid-plane. In these

two cuts one expects stagnation points of the convective

flow, namely, at the low field side (LFS) for an odd

number of poloidal turns and at HFS for an even

number of turns. In this way, the picture of the transport

at the edge is rather simplified.

3. Numerical realization

3.1. Grids

The numerical scheme investigated here is based on a

splitting method, and consists of a FEM [7] for cross

field transport and a finite difference method (FDM) for

parallel transport. At each time step, the FEM and the

FDM are alternated. The cross field transport is ap-

proximated on poloidal cross sections at each 90� to-

roidal angle, which is triangulated for the FEM. The

triangles on each poloidal cut are connected in order to

obtain volume cells for the FDM in the parallel direc-

tion. In order to reflect the three dimensional structure

of the magnetic field, the volume cells are oriented along

the flux tubes. This is done by mapping the grid along

field lines over the whole computation domain. In this

way, each volume cell represents a flux tube, and we call

such grids 3D grids.

This is, however, not so easily done because the tri-

angles tend to overlap each other after the mapping for

certain distance due to the deformation of the flux tube

[2]. This �crushing� on one hand side is a numerical ar-

tifact. The mapping of flux tubes is area preserving.

However, in a chaotic system the flux tubes can be

strongly elongated and bent such that the triangle cells

used in the FEM loose their straight character. If one

connects the triangle vertices by lines, the triangles do

not preserve area and even may overlap. However,

considering the location of the strongest stretching and

bending, one can find an optimized scheme as shown in

Fig. 2. Here the case of the two poloidal turns is con-

sidered. The stagnation zone (Fig. 2(b)) is first mapped

until the flux tube is highly deformed (Fig. 2(a)). In this

cut an enough number of lines to resolve the deforma-

tion is introduced and mapped back to the stagnation

area. Because of the symmetry of the problem, a sym-

metric set of lines is added there (Fig. 2(c)). The squares

thus generated are subdivided into triangles (Fig. 2(d)).

The triangles are now fine enough to follow the defor-

mation, so that the grid is optimized not to overlap, as

shown in Fig. 3.

The optimization was checked with the area preser-

vation of each triangle. We made several tries for each

region to reduce the error in area, but the best is around

10%, which will result in the error of flux conservation of

particles, energy and momentum. The whole area of the

bunch of flux tubes, on the other hand, is well preserved

within less than 1% error. The validity of the grid has to

be discussed concerning what quantity we need to cal-

culate.

3.2. CPU time

Saving CPU time is one of the major issues for a large

computation, and we first checked this as well as con-

vergence of the code, starting with as simple a geometry

as possible. A straight SOL of 10 m long was assumed

with a square cross section ðDx;DyÞ ¼ ð2; 4Þ cm, where
in Cartesian coordinate ðx; y; zÞ, z is along field lines, x
and y are perpendicular each other and to the field lines.
We solved Braginskii equations [8] in the following form

(all notations are standard ones);
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Fig. 1. An example of two poloidal turn field lines, where the

trajectory is projected onto a certain poloidal cut. In this case

the symmetric plane (stagnation plane) exits at HFS as shown

with the broken line. For odd number of poloidal turns, the

symmetric plane is located at LFS.
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The flux comes into the SOL at y ¼ 0 cm, and no flux is

assumed at y ¼ 4 cm and at both sides, x ¼ �1 cm. The
flux is to flow to the wall along the field lines. Eight

regularly triangulated grids (128 triangles each) are

equally spaced along z for a cross field transport. The

calculation started with a initial constant n, vz, Te;i pro-
files in both perpendicular and parallel direction except

that vz was set to have smooth increase towards the wall

along field lines. The cross field transport calculation is

parallelized between the eight cuts and FDM uses an

explicit scheme.

The convergence was checked with the area integral

of each physical quantity (density, velocity, temperature)

at each cut. Fig. 4 shows the time evolutions of the in-

tegrals of density and electron temperature. The density

decreases toward the wall and takes a maximum around

the stagnation point. Te and Ti are almost constant along
Fig. 3. Optimized 3D grid in two turn region. The triangles do

not overlap and follow the deformation.
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Fig. 2. Optimization of the grid in 2 turn region. (a) The deformed flux tube away from the stagnation plane, where the lines are drawn

first. (b) The stagnation plane to where the lines are mapped back. (c) The lines are reflected symmetrically around h ¼ 180�. (d) The
grids are made following the lines.
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field lines due to the very high heat conductivity je;i
k . In

this figure convergence is not reached and we find the

integral of electron temperature starts to oscillate around

12 000 step. The oscillation is a precursor to a numerical

instability and leads to break down of the calculation.

Since we are using an explicit scheme for parallel

transport, the stability is limited in certain parameter

domain, which is shown by von Neumann stability

analysis. That is, in our case,

Dt6
ðDzÞ2

2Dmax

/ ðDzÞ2n
T 2:5
e

ð4Þ

because, here Dmax ¼ je
k=1:5n / T 2:5

e =n.
The restriction says that one can not predict the fu-

ture beyond the diffusion time across a cell of width Dz.
This threshold is reached around 12 000 steps due to the

decrease of n (Te also decreases but that of n is larger).

The Dt was reduced to half at 16 000 steps to avoid the

instability, then the oscillation stopped and Te started

to increase. The increase in Te, however, lowers the

threshold in Eq. (4), it forced us to reduce the Dt again
afterwards. In the case of Fig. 4, it took 31.4 min. CPU

time using eight processors and the particle influx and

outflux over the computation domain are not balanced

yet (
 jinflux=outfluxj ¼ 0:63). We also tried the prob-

lem with increased number of triangles (1440, which is

necessary for real configuration) using 20 processors,

where the convergence was not reached after 50 h. The

slow down of the code turns out to be a severe problem.

By using a fully implicit scheme in parallel direction

the time step can be selected to be longer and the scheme

is unconditionally stable for any time step. However,

since we are using a splitting method a physical con-

straint on the time step arises. For the time step of

parallel calculation, Dtk, it must be smaller than the

order of time needed for quantity to propagate across

one grid interval in perpendicular direction, i.e.,

< ðDx?Þ2=ð2DÞ. For the same argument, the time step of
perpendicular calculation, Dt?, must be smaller than the

order of ðDxkÞ2=ð2je
k=nÞ, where Dx? and Dxk are a grid

spacing in perpendicular and parallel direction, respec-

tively. If we take, Dx? 
 1 mm, Dxk 
 1:4 m, D 
 1 m2/s,

je
k=n 
 3� 107 m2/s, then Dtk < 5� 10�7 s and Dt? <
3� 10�8 s, which are almost same order of the time step

used in the present analysis.

3.3. Accuracy

A particle balance over the whole computation do-

main was calculated to check to see the accuracy of the

code. For this purpose, the energy equation was skip-

ped. The Te and Ti were set constant along the field lines

and exponential decay assumed in y direction with

kT ¼ 2 cm. Other parameters are same as the problem

discussed above. After convergence was reached within

about 10 min. CPU time, the particle balance was

checked, which is shown in Table 1. The values of DEG

indicate the degree of piecewise polynomial basis func-

tions on triangular elements, used in the FEM (Galerkin

method) [7]. It is found that changing DEG from 1 to 2

reduces the error significantly with more than 10%, while

DEG ¼ 3 and 4 does not so much. The increase of the

number of cuts is, surprisingly, not so effective. This is

probably due to the rather flat density and velocity

profile along the field lines, which is caused by the cross

field momentum transport. Concerning the price both

for the error and CPU time, second order piecewise basis

Table 1

Particle balance for different DEG, for different number of

triangles (128 and 256) and of cuts

DEG 8 cuts 16 cuts 32 cuts

128 128 256 128

1 80.2 (0.034) 81.0 (0.048) 85.5 (0.069) 81.8 (0.075)

2 95.3 (0.057) 96.7 (0.076) 97.0 (0.127) 98.0 (0.100)

3 95.7 (0.109) 97.1 (0.129)

4 95.6 (0.194) 97.1 (0.210)

The values show jinflux=outfluxj � 100 (%). The values in the

brackets are the CPU time per step in seconds.
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Fig. 4. The time evolutions of area integrals of (a) density and

(b) electron temperature at different cuts. The electron tem-

perature starts to oscillate around 12 000 steps. The Dt was set
to 2:0� 10�8 s at first, which was reduced afterwards.
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function (DEG ¼ 2) with fewer triangles would be a

reasonable choice for this problem.

4. Summary

The approach to 3D transport simulations for

TEXTOR-DED configuration with a FEM has been

discussed. In summary:

By introducing the laminar zone, the treatment like

SOL model is available and therefore the model becomes

rather simple. At the moment, the individual triangles in

the 3D grids have about 10% error in the area, which

automatically will lead to the error of flux conservation.

The cause of the error in the area is the deformation of

the flux tube due to the perturbation field. The slow

down of the code was found significant due to the ex-

plicit scheme used in FDM for parallel transport. The

very high heat conductivity in parallel direction, je
k,

limits the time step. The accuracy of the code was

checked with particle balance in a simple straight SOL

model, where we found improvement was achieved by a

higher degree basis function rather than an increase of

number of triangles and of cuts.
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